sábado, 26 de marzo de 2011

LO IMPERCEPTIBLE DE LO PERCEPTIBLE

 BIOLOGIA                  

                       Ciclo celular

El ciclo celular es un conjunto ordenado de sucesos que conducen al crecimiento de la célula y la división en dos células hijas. Las células que no están en división no se consideran que estén en el ciclo celular. Las etapas, mostradas a la derecha, son G1-S-G2 y M. El estado G1 quiere decir "GAP 1"(Intervalo 1). El estado S representa "Síntesis". Este es el estado cuando ocurre la replicación del ADN. El estado G2 representa "GAP 2"(Intervalo 2). El estado M representa «la fase M», y agrupa a la mitosis (reparto de material genético nuclear) y citocinesis (división del citoplasma). Las células que se encuentran en el ciclo celular se denominan «proliferantes» y las que se encuentran en fase G0 se llaman células quiescentes. Todas las células se originan únicamente de otra existente con anterioridad. El ciclo celular se inicia en el instante en que aparece una nueva célula, descendiente de otra que se divide, y termina en el momento en que dicha célula, por división subsiguiente, origina dos nuevas células hijas.

Fases del ciclo celular

La célula puede encontrarse en dos estados claramente diferenciados:
  • El estado de división, llamado fase M.
  • El estado de no división o interfase. La célula realiza sus funciones específicas y, si está destinada a avanzar a la división celular, comienza por realizar la duplicación de su ADN.
Interfase
Es el período comprendido entre divisiones celulares. Es la fase más larga del ciclo celular, ocupando casi el 95% del ciclo, trascurre entre dos mitosis y comprende tres etapas:
  • Fase G1 (del inglés Growth o Gap 1): Es la primera fase del ciclo celular, en la que existe crecimiento celular con síntesis de proteínas y de ARN. Es el período que trascurre entre el fin de una mitosis y el inicio de la síntesis de ADN. Tiene una duración de entre 6 y 12 horas, y durante este tiempo la célula duplica su tamaño y masa debido a la continua síntesis de todos sus componentes, como resultado de la expresión de los genes que codifican las proteínas responsables de su fenotipo particular. En cuanto a carga genética, en humanos (diploides) son 2n 2c.
  • Fase S (del inglés Synthesis): Es la segunda fase del ciclo, en la que se produce la replicación o síntesis del ADN, como resultado cada cromosoma se duplica y queda formado por dos cromátidas idénticas. Con la duplicación del ADN, el núcleo contiene el doble de proteínas nucleares y de ADN que al principio. Tiene una duración de unos 6-8 horas.
  • Fase G2 (del inglés Growth o Gap 2): Es la tercera fase de crecimiento del ciclo celular en la que continúa la síntesis de proteínas y ARN. Al final de este período se observa al microscopio cambios en la estructura celular, que indican el principio de la división celular. Tiene una duración entre 3 y 4 horas. Termina cuando la cromatina empieza a condensarse al inicio de la mitosis. La carga genética de humanos es 2n 4c, ya que se han duplicado los cromosomas, teniendo ahora dos cromátidas cada uno.
Fase M (mitosis y citocinesis)
Es la división celular en la que una célula progenitora (células eucariotas, células somáticas -células comunes del cuerpo-) se divide en dos células hijas idénticas. Esta fase incluye la mitosis, a su vez dividida en: profase, metafase, anafase, telofase; y la citocinesis, que se inicia ya en la telofase mitótica. Si el ciclo completo durara 24 h, la fase M duraría alrededor de media hora (30 minutos).


Componentes reguladores

El ciclo celular es controlado por un sistema que vigila cada paso realizado. En regiones concretas del ciclo, la célula comprueba que se cumplan las condiciones para pasar a la etapa siguiente: de este modo, si no se cumplen estas condiciones, el ciclo se detiene.Existen cuatro transiciones principales:
  • Paso de G0 a G1: comienzo de la proliferación.
  • Transición de G1 a S: iniciación de la replicación.
  • Paso de G2 a M: iniciación de la mitosis.
  • Avance de metafase a anafase
Los genes que regulan el ciclo celular se dividen en tres grandes grupos:
  1. Genes que codifican proteínas para el ciclo: enzimas y precursores de la síntesis de ADN, enzimas para la síntesis y ensamblaje de tubulina, etc.
  2. Genes que codifican proteínas que regulan positivamente el ciclo: también llamados protooncogenes.[ Las proteínas que codifican activan la proliferación celular, para que células quiescentes pasen a la fase S y entren en división. Algunos de estos genes codifican las proteínas del sistema de ciclinas y quinasas dependientes de ciclina. Pueden ser:
    • Genes de respuesta temprana, inducidos a los 15 minutos del tratamiento con factores de crecimiento, sin necesidad de síntesis proteica;
    • Genes de respuesta tardía, inducidos más de una hora después del tratamiento con factores de crecimiento, su inducción parece estar causada por las proteínas producidas por los genes de respuesta temprana.
  3. Genes que codifican proteínas que regulan negativamente el ciclo:También llamados genes supresores tumorales.
Las ciclinas y las quinasas dependientes de ciclina (CDK), son sintetizadas a partir de protooncogenes y trabajan en cooperación para regular el ciclo positivamente. Fosforilan serinas y treoninas de proteínas diana para desencadenar procesos celulares.
Los protooncogenes son genes cuya presencia o activación a oncogenes pueden estimular el desarrollo de cancer. cuando se activan exageradamente en las células normales provocan que ellas pierdan el control de la división y se mantengan proliferando sin control.
Expresión diferencial de ciclinas en las distintas fases del ciclo.
Las ciclinas son un grupo heterogéneo de proteínas con una masa de 36 a 87 kDa. Se distinguen según el momento del ciclo en el que actúan. Las ciclinas son proteínas de vida muy corta: tras disociarse de sus kinasas asociadas, se degradan con extrema rapidez.
Las kinasas dependientes de ciclinas (CDK por sus siglas en inglés) son moléculas de mediano peso molecular que presentan una estructura proteica característica, consistente en dos lóbulos entre los cuales está el centro catalítico, donde se inserta el ATP (que será el donador de grupos fosfato. En el canal de entrada al centro catalítico existe una treonina que debe estar fosforilada para que la qunasa actúe. No obstante, en el propio centro hay dos treoninas que, al ser fosforiladas, inhiben a la quinasa y una región de unión a la ciclina llamada PSTAIRE. Existe una tercera región en las CDK, alejada del centro catalítico, a la que se une la proteína CKS, que regula la actividad kinasa de la CDK.
Archivo:Regulación ciclo celular.png


Relación del algunas ciclinas de vertebrados y levaduras[1]
VertebradosLevaduras
Complejo Cdk/ciclinaCiclinaCdk asociadaCiclinaCdk asociada
Cdk-G1ciclina DCdk 4,6Cln3Cdk1
Cdk-G1/Sciclina ECdk2Cln1,2Cdk1
Cdk-Sciclina ACdk2Clb5,6Cdk1
Cdk-Mciclina BCdk1Clb1,2,3,4Cdk1

Puntos de control
Existen unos puntos de control en el ciclo que aseguran la progresión sin fallos de éste, evaluando el correcto avance de procesos críticos en el ciclo, como son la replicación del ADN o la segregación de cromosomas.Estas rutas de verificación presentan dos características, y es que son transitorias (desaparecen una vez resuelto el problema que las puso en marcha) y que pueden caducar si el problema no es resuelto al cabo de un tiempo. Dichos puntos de control son:
  • Punto de control de ADN no replicado, en la entrada de fase M. Actúa inhibiendo a Cdc25, el cual es un activador de la Ciclina A/B Cdk1.
  • Punto de control de ensamblaje del huso (checkpoint de mitosis), antes de la anafase. Se activa una proteína Mad2 que impide la degradación de la segurina, lo que impide la segregación de las cromátidas hermanas hasta que todas se hayan unido al huso. Es pues el punto de control de la separación de cromosomas, al final de la mitosis. En caso de que fuera incorrecto, se impediría la degradación de la ciclina B por parte de APC.
  • Punto de control del daño del ADN, en G1, S o G2. El daño celular activa a p53, proteína que favorece la reparación el ADN, detiene el ciclo promoviendo la transcripción de p21, inhibidor de Cdk, y, en el caso de que todo falle, estimula la apoptosis.
FUENTE: http://es.wikipedia.org/wiki/Ciclo_celular

Herencia genética

La herencia genética es la transmisión a través del material genético contenido en el núcleo celular, de las características anatómicas, fisiológicas o de otro tipo, de un ser vivo a sus descendientes. El ser vivo resultante tendrá características de uno o de los dos padres.
La herencia consiste en la transmisión a su descendencia de los caracteres de los ascendentes. El conjunto de todos los caracteres transmisibles, que vienen fijados en los genes, recibe el nombre de genotipo y su manifestación exterior en el aspecto del individuo el de fenotipo. Se llama idiotipo al conjunto de posibilidades de manifestar un carácter que presenta un individuo.
Para que los genes se transmitan a los descendientes es necesaria una reproducción idéntica que dé lugar a una réplica de cada uno de ellos; este fenómeno tiene lugar en la meiosis.
Las variaciones que se producen en el genotipo de un individuo de una determinada especie se denominan variaciones genotípicas. Estas variaciones genotípicas surgen por cambios o mutaciones (espontáneas o inducidas por agentes mutagénicos) que pueden ocurrir en el ADN. Las mutaciones que se producen en los genes de las células sexuales pueden transmitirse de una generación a otra. Las variaciones genotípicas entre los individuos de una misma especie tienen como consecuencia la existencia de fenotipos diferentes. Algunas mutaciones producen enfermedades, tales como la fenilcetonuria, galactosemia, anemia falciforme, síndrome de Down, síndrome de Turner, entre otras. Hasta el momento no se ha podido curar una enfermedad genética, pero para algunas patologías se está investigando esta posibilidad mediante la terapia génica.
Lo esencial de la herencia queda establecido en la denominada teoría cromosómica de la herencia, también conocida como teoría cromosómica de Sutton y Boveri:
  1. Los genes están situados en los cromosomas.
  2. Los genes están dispuestos linealmente en los cromosomas.
  3. La recombinación de los genes se corresponde con el intercambio de segmentos cromosómicos (Crossing over).

La transferencia genética horizontal es factor de confusión potencial cuando se infiere un árbol filogenético basado en la secuencia de un gen. Por ejemplo, dadas dos bacterias lejanamente relacionadas que han intercambiado un gen, un árbol filogenético que incluya a ambas especies mostraría que están estrechamente relacionadas puesto que el gen es el mismo, incluso si muchos de otros genes tuvieran una divergencia substancial. Por este motivo, a veces es ideal usar otras informaciones para inferir filogenias más robustas, como la presencia o ausencia de genes o su ordenación, o, más frecuentemente, incluir el abanico de genes más amplio posible.

Las Leyes de Mendel

Primera Ley de Mendel o Principio de Ley de la Dominancia.- Esta Ley menciona que para cada característica hereditaria existen genes dominantes y recesivos. Sin importar cual padre contribuye con el carácter dominante el híbrido o heterocigoto siempre tendrá fenotipo dominante.
Segunda Ley de Mendel o Principio de la Segregación de Caracteres.Un carácter hereditario se transmite como una unidad que no se combina, se diluye o se pierde al pasar de una generación a otra, sólo se segrega o se separa.
Tercera Ley de Mendel o de Distribución Independiente. Anuncia que un par de alelos se distribuye en forma independiente de otro par de alelos. Los caracteres se heredan de manera independiente unos de otros.
Mendel publicó sus trabajos en 1866, pero ningún científico importante de su tiempo lo conoció, fue hasta 1900 cuando Hugo de Uries, Carl Curres y Erick Schermat descubrieron, trabajando sobre dos procesos de la herencia que Mendel ya los había descubierto.
En 1901 William Sutton encontró que los genes se encuentran en los cromosomas. Los cromosomas son pequeños cuerpos que se encuentran en las células, en su núcleo, en ellos se encuentran los genes.
La cantidad de cromosomas varían según la especie. En las células humanas hay dos tipos de cromosomas, a saber, los autosomas y los heterocromosomas. Los autosomas transmiten las características, los heterocromosomas o cromosomas sexuales determinan el sexo, forman el par 23.
El varón tiene 22 pares de autosomas y un par de cromosomas sexuales formados por uno X y otro Y. La mujer tiene 22 pares de autosomas y un par de cromosomas sexuales formado por los cromosomas XX.
El carotipo.
Consiste en encontrar por medio de la observación en el microscopio, la cantidad de pares de cromosomas que los constituyen.
El hombre ha conseguido un avance increíble en los conocimientos de proceso de la herencia.
Los Genes. Después de que se conoció la estructura del ADN, se continuó investigando qué relación habría entre él y los genes. Ahora se sabe que un gen sólo es una pequeña fracción de cadena del ADN.
Cromosomas.- Estructuras filamentosas constituidas por cromatina (complejo y estructura formada por ácidos nucléicos como ADN, ARN y algunas proteínas que contienen la información genética en una secuencia lineal). Se encuentran en los núcleos de las células; existen dos tipos importantes de cromosomas autosomas o células somáticas, que son aquellas que ayudan a la formación de todos los tejidos, órganos, aparatos, así como la morfología de los seres vivos, en el caso del ser humanos son 22 pares o 44 heterocromosomas (cromosomas sexuales). Estos cromosomas determinan el sexo en los seres vivos.
Las Mutaciones. Mutación es un cambio en el material genético de los organismos, entre los genes o en los cromosomas.
Continuamente ocurren cambios en las características hereditarias de los organismos, es decir, en los genes La parte de las mutaciones es dañina para el organismo, en el cual suceden, por lo general, un individuo cambio tanto que no se adapta a su medio y muere. Solo algunas mutaciones son ventajosas.
Las bacterias ejemplifican la importancia de que un organismo se adapte.
Las mutaciones son cambios en uno o varios genes de los cromosomas. Existen muchos factores que pueden causar los cambios en los genes, estos factores se llaman agentes mutagénicos, algunos de ellos son los Rayos X.
Cuando una mutación sucede en las células germinales hay cambios en el individuo que se formará, pero si ocurre en las células somáticas pueden causar cáncer.

fuemte : http://www.monografias.com/trabajos11/biogenet/biogenet.shtml
BIOFISICA

                                        Onda

 una onda es una propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal o el vacío.
Elementos de una Onda
  • Cresta: La cresta es el punto más alto de dicha amplitud o punto máximo de saturación de la onda.
  • Período: El periodo es el tiempo que tarda la onda de ir de un punto de máxima amplitud al siguiente.
  • Amplitud: La amplitud es la distancia vertical entre una cresta y el punto medio de la onda. Nótese que pueden existir ondas cuya amplitud sea variable, es decir, crezca o decrezca con el paso del tiempo.
  • Frecuencia: Número de veces que es repetida dicha vibración. En otras palabras, es una simple repetición de valores por un período determinado.
  • Valle: Es el punto más bajo de una onda.
  • Longitud de onda: Distancia que hay entre dos crestas consecutivas de dicho tamaño.
Características

A = En aguas profundas.
B = En aguas superficiales. El movimiento elíptico de una partícula superficial se vuelve suave con la baja intensidad.
1 = Progresión de la onda
2 = Monte
3 = Valle
Las ondas periódicas están caracterizadas por crestas/montes y valles, y usualmente es categorizada como longitudinal o transversal. Una onda transversal son aquellas con las vibraciones perpendiculares a la dirección de propagación de la onda; ejemplos incluyen ondas en una cuerda y ondas electromagnéticas. Ondas longitudinales son aquellas con vibraciones paralelas en la dirección de la propagación de las ondas; ejemplos incluyen ondas sonoras.
Cuando un objeto corte hacia arriba y abajo en una onda en un estanque, experimenta una trayectoria orbital porque las ondas no son simples ondas transversales sinusoidales.
Ondas en la superficie de una cuba son realmente una combinación de ondas transversales y longitudinales; por lo tanto, los puntos en la superficie siguen caminos orbitales.
Todas las ondas tiene un comportamiento común bajo un número de situaciones estándar. Todas las ondas pueden experimentar las siguientes:
  • Difracción - Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.
  • Efecto Doppler - Efecto debido al movimiento relativo entre la fuente emisora de las ondas y el receptor de las mismas.
  • Interferencia - Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.
  • Reflexión - Ocurre cuando una onda, al encontrarse con un nuevo medio que no puede atravesar, cambia de dirección.
  • Refracción - Ocurre cuando una onda cambia de dirección al entrar en un nuevo medio en el que viaja a distinta velocidad.
  • Onda de choque - Ocurre cuando varias ondas que viajan en un medio se superponen formando un cono.
                                                                      EL OIDO



El sentido del oído nos permite percibir los sonidos, su volumen, tono, timbre y la dirección de la cual provienen. Las vibraciones sonoras son recibidas por el oído y esas sensaciones son transmitidas al cerebro. El oído humano sólo está capacitado para oír un rango de ondas sonoras, ya que no percibe las vibraciones menores a 20 veces por segundo ni mayores a 20.000 veces por segundo. En el oído se encuentran también terminales nerviosas que reciben información acerca de los movimientos del cuerpo, ayudando a mantener el equilibrio del mismo.


Se divide en tres zonas: externa, media e interna:
El oído externo es la parte del aparato auditivo que se encuentra en posición lateral al tímpano o membrana timpánica. Comprende la oreja o pabellón auricular (lóbulo externo del oído) y el conducto auditivo externo, que mide tres centímetros de longitud.
El oído medio se encuentra situado en la cavidad timpánica llamada caja del tímpano, cuya cara externa está formada por la membrana timpánica, o tímpano, que lo separa del oído externo. Incluye el mecanismo responsable de la conducción de las ondas sonoras hacia el oído interno. Es un conducto estrecho, que se extiende unos quince milímetros en un recorrido vertical y otros quince en recorrido horizontal. El oído medio está en comunicación directa con la nariz y la garganta a través de la trompa de Eustaquio, que permite la entrada y la salida de aire del oído medio para equilibrar las diferencias de presión entre éste y el exterior. Hay una cadena formada por tres huesos pequeños y móviles (huesecillos) que atraviesa el oído medio. Estos tres huesos reciben los nombres de martillo, yunque y estribo. Los tres conectan acústicamente el tímpano con el oído interno, que contiene un líquido.
El oído interno, o laberinto, se encuentra en el interior del hueso temporal que contiene los órganos auditivos y del equilibrio, que están inervados por los filamentos del nervio auditivo. Está separado del oído medio por la fenestra ovalis, o ventana oval. El oído interno consiste en una serie de canales membranosos alojados en una parte densa del hueso temporal, y está dividido en: cóclea (en griego, ’caracol óseo’), vestíbulo y tres canales semicirculares. Estos tres canales se comunican entre sí y contienen un fluido gelatinoso denominado endolinfa.

                                                                    EL OJO
El ojo es un órgano que detecta la luz, por lo que es la base del sentido de la vista.
Se compone de un sistema sensible a los cambios de luz, capaz de transformar éstos en impulsos eléctricos. Los ojos más sencillos no hacen más que detectar si los alrededores están iluminados u oscuros. Los más complejos sirven para proporcionar el sentido de la vista.
Los ojos compuestos se encuentran en los artrópodos (insectos, arácnidos, miriápodos, crustáceos, etc.) y están formados por muchas facetas simples llamadas omatidios que dan una imagen en mosaico, no imágenes múltiples, como a menudo se cree.
En la mayoría de los vertebrados y algunos moluscos, el ojo funciona como una cámara, proyectando imágenes en la retina, donde la luz se transforma, gracias a unas células llamadas fotorreceptoras, en impulsos nerviosos que son trasladados a través del nervio óptico al cerebro.

Las lentes son objetos transparentes (normalmente de vidrio), limitados por dos superficies, de las que al menos una es curva.
Las lentes más comunes se basan en el distinto grado de refracción que experimentan los rayos de luz al incidir en puntos diferentes de la lente. Entre ellas están las utilizadas para corregir los problemas de visión en gafas , anteojos o lentillas. También se usan lentes, o combinaciones de lentes y espejos, en telescopios y microscopios. El primer telescopio astronómico fue construido por Galileo Galilei usando una lente convergente (lente positiva) como objetivo y otra divergente (lente negativa) como ocular. Existen también instrumentos capaces de hacer converger o divergir otros tipos de ondas electromagnéticas y a los que se les denomina también lentes. Por ejemplo, en los microscopios electrónicos las lentes son de carácter magnético.
En astrofísica es posible observar fenómenos de lentes gravitatorias cuando la luz procedente de objetos muy lejanos pasa cerca de objetos masivos, y se curva en su trayectoria.
Archivo:Tipos de Lentes.svg










Astigmatismo (curvatura no uniforme del cristalino), alteración de la visión producida por un defecto de los medios de refracción oculares; casi siempre el problema tiene su origen en la superficie anterior de la córnea, que ha perdido su esfericidad normal y produce un cambio simétrico o asimétrico de su función de lente. Se trata de un defecto, en general, no progresivo que puede ser corregido mediante gafas o lentes de contacto.
El astigmatismo resulta de la deformación de la córnea o de la alteración de la curvatura de la lente ocular, con una curvatura mayor a lo largo de un meridiano que del otro; el resultado es una visión distorsionada debido a la imposibilidad de que converjan los rayos luminosos en un sólo punto de la retina.

La miopía y la hipermetropía están causadas por una falta de simetría en la forma del globo ocular, o por defecto, por la incapacidad de los músculos oculares para cambiar la forma de las lentes y enfocar de forma adecuada la imagen en la retina. La miopía puede corregirse con el empleo de lentes bicóncavas y la hipermetropía requiere lentes convexos.

FUENTE:  http://html.rincondelvago.com/enfermedades-del-ojo.html
http://es.wikipedia.org/wiki/Lente
http://es.wikipedia.org/wiki/Ojo

30 comentarios:

  1. Tatiana, muy bien sigue así, publica por lo menos una entrada cada día y así tendrás un material muy valioso que muestra lo que vas aprendiendo a lo largo de todo tu proceso de formación.

    ResponderEliminar
  2. muy importante la informacion para futuros estudiantes del tema e inclusive para nosotros que ya lo vimos, muy chevere el blog

    ResponderEliminar
  3. El diseño del blog esta muy bien y la distribucion tanto de imagenes como de texto es la adecuada. Muy buen Blog

    ResponderEliminar
  4. La información es muy completa y lleva muy buen seguimiento de los casos, el tipo de letra me gusta aunque se puede ver un poco confusa de acuerdo a la palabra. Tiene imágenes y videos muy acordes al texto.

    ResponderEliminar
  5. Esta muy interasante la parte de genetica , me gusto mucho el video, y las imagenes el blog esta bien trabajado

    ResponderEliminar
  6. La información esta en proporciones adecuadas y las imagenes son buenas, lo que hace que sea informacion que llama la atencion. Buen trabajo.

    ResponderEliminar
  7. Tatiana muy interesante tu blog. El último video esta excelente.

    ResponderEliminar
  8. muy lindooo y tiene videos muy buenosss, pero me parece que deberias cambiar el tipo de letra!... muy interesanteee tati ;=)

    ResponderEliminar
  9. Es un blog muy llamativo, los colores captaron mi atención. Tienes información muy buena y con imágenes que ayudan mucho a comprenderla, excelentes vídeos. FELICITACIONES!!!

    ResponderEliminar
  10. Esta muy lindo tu blog, se nota el tiempo y la dedicación... tiene excelentes imágenes y está muy organizado. Te felicitoo! :P

    ResponderEliminar
  11. Tati me gusta tu blog, muy ordenada la informacion, el diseño permite una buena lectura y las imagenes y videos complementan muy bien :)

    ResponderEliminar
  12. Tatii!! Esta Muy bonito tu blog y la informacion esta muy interesante, me encanta la forma en que organizas los temas!! Felicitaciones

    ResponderEliminar
  13. las imagenes son muy adecuadas al tema, el fondo y la letra estan muy organizadas muy bn!!

    ResponderEliminar
  14. Sinceramente: AMO LA LETRA
    Está muy completo el blog y siento que te has dedicado muy bien a hacerlo. felicitaciones

    ResponderEliminar
  15. Todo muy ordenado y buen manejo de los temas.

    ResponderEliminar
  16. El blog está muy ordenado, se puede ver la dedicación y estoy segura que la información a sido recopilada de manera ordenada

    ResponderEliminar
  17. Creo que el diseño es super apropiado, además la información está clara, pienso que has hecho un gran trabajo, Muy bien!
    DE VERDAD MUY BUEN DISEÑO, muy buenas herramientas como juegos y música...! excelente!

    ResponderEliminar
  18. tiene un diseño muy lindo y organizado con información muy clara y con muy buenas imagenes y videos =)

    ResponderEliminar
  19. Excelente blog, con mucha informacion q puede servir para cualquier tipo de investigacion, tambien esta muy organizado y completo, ademas tiene un bonito diseño y utiliza ayudas audiovisuales muy buenas q sirven para ampliar o explicar un tema

    ResponderEliminar
  20. tatiana me gusta mucho tu blog, se te nota el tiempo y la dedicacion que le has metido, me parece excelente tu blog y muy organizado!

    ResponderEliminar
  21. hola, muy interesante tu blog, usas muy bien las ayudas visuales y auditivas, la música puede distraer un poco pero en lo demás está muy bien y muy organizado.

    ResponderEliminar
  22. Muy bueno, me gusta el detalle de que todas tus entradas sean alusivas a las casos ademas manejas muy bien las ayudas visuales

    ResponderEliminar
  23. Muy agradable este sitio, cuentas con buena información y bien completo

    ResponderEliminar
  24. es un sitio muy agradable con la informacion muy estructurada

    ResponderEliminar
  25. Este comentario ha sido eliminado por el autor.

    ResponderEliminar
  26. muy buena la nformacion y excelentes las imagenes animadas y moviles

    ResponderEliminar
  27. Un blog muy bonito, tiene un diseño fresco y atractivo, la informacion es interesante y bastante util ademas de las imagenes que ayudan bastante al entedimiento de la informacion, buen trabajo.

    ResponderEliminar
  28. Me complace notar que realizas un excelente trabajo :) animos.

    ResponderEliminar
  29. Me gusto mucho tu blog porque tiene muchas imágenes para complementar los temas tratados; pero la música del fondo algo estresante a la hora de leer Sigue así, buen trabajo.

    ResponderEliminar
  30. ola!!! tu blog esta muy lindo y organizado, y los temas relacionados ocn lo que hemos visto en el semestre ;)

    ResponderEliminar